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• Sucralose was detected and quantified
in different organs of Cyprinus carpio.

• Sucralose is not bio-accumulated in the
organs and tissues of Cyprinus carpio.

• Sucralose induces the SOD and CAT ac-
tivity in gills, muscle and brain of
Cyprinus carpio.

• Sucralose induces damage to lipids and
proteins in gills, muscle, brain and liver
of Cyprinus carpio.
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Sucralose (SUC) is an artificial sweetener that is nowwidely used in North American and Europe; it has been de-
tected in a wide variety of aquatic environments. It is considered safe for human consumption but its effects in
the ecosystem have not yet been studied in depth, since limited ecotoxicological data are available in the peer-
reviewed literature. This study aimed to evaluate potential SUC-induced toxicological hazard in the blood,
brain, gill, liver and muscle of Cyprinus carpio using oxidative stress biomarkers. Carps were exposed to two dif-
ferent environmentally relevant concentrations (0.05 and 155 μg L−1) for different exposure times (12, 24, 48, 72
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and 96 h). The following biomarkerswere evaluated: lipid peroxidation (LPX), hydroperoxide content (HPC) and
protein carbonyl content (PCC), as well as the activity of antioxidant enzymes, superoxide dismutase (SOD) and
catalase (CAT). SUC was determined by high pressure liquid chromatography tandem mass spectrometry tech-
niques (HPLC)–MS/MS. Results show a statically significant increase in LPX, HPC, PCC (P b 0.05) especially in
gill, brain andmuscle, aswell as significant changes in the activity of antioxidant enzymes in gill andmuscle. Fur-
thermore, the biomarkers employed in this study are useful in the assessment of the environmental impact of this
agent on aquatic species.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Artificial sweeteners are used worldwide as sugar substitutes in re-
markable amounts in food, beverages, and also in drugs and sanitary
products, such as mouthwashes. They provide no or negligible energy
and thus are ingredients of dietary products (Kroger et al., 2006;
Zygler et al., 2009). The most popular artificial sweeteners are aspar-
tame (ASP), neotame (NEO), alitame (ALI), acesulfame (ACS), saccharin
(SAC), cyclamate (CYC), sucralose (SUC), and neohesperidin
dihydrochalcone (NHDC). Of the variety of artificial sweeteners being
used, only ACS, CYC, SAC and SUChave been identified inwastewater ef-
fluents (Lange et al., 2012).

Artificial sweeteners are highly consumed, particularly in the U.S.,
with increasing trends in consumption, especially after the introduction
of SUC in 1998. The global market for artificial sweeteners reaches $5.1
billion, of which the U.S. and Europe currently make up 65% (Bennett,
2008). Production volumes of artificial sweeteners vary between re-
ports. The U.S. is currently the largest market for SUC, making use of
more than 1500 tons per year, followed by Europe, with around
400 tons per year, as reported by amajor Chinese company that recently
entered into the SUC market. In the Asian Pacific market, the volume
output in total of SAC, CYC, ACS, ASP, SUC, ALI and NEO, grew approxi-
mately 10% between 2009 and 2010, reaching approximately
109,000 tons per year (Kokotou et al., 2012). SUC constituted about
16% of theU.S. high intensity sweetenersmarket in 2009, and its growth
is expected to be high, almost 5% annually, through the next few years
(Haely, 2012).

Although from the beginning of their use there have been controver-
sies over their risk as potential carcinogens (Weihrauch and Diehl,
2004), these sweetener compounds are generally considered to be
safe for use in foodstuffs (Cohen et al., 2008; Kroger et al., 2006;
Ahmed and Thomas, 1992). Moreover, due to these compounds are
metabolically inert in the human body it has been believed that are
also inert in the environment. However in recent years the concern is
shifting from health concerns to ecosystem concerns (Sang et al., 2014).

Excretion after human consumption is undoubtedly a major source
of artificial sweeteners in the environment, but it is surely not the
only one (Kokotou et al., 2012). From households and industries, all ar-
tificial sweeteners enter into wastewater treatment plants, where in
most cases passes without any change through these processes, as a re-
sult they eventually reside in the receiving environmental water bodies
(Houtman, 2010). In addition, direct discharges from industry, house-
holds, animal farming and agriculture burden surface waters with arti-
ficial sweeteners (Houtman, 2010).

SUC (also known as Splenda) is a relatively new artificial sweetener
that is nowwidely used inNorth American and Europe. SUC is produced
by the chlorination of sucrose, which leads to a stabile compound that is
poorly absorbed in themammalian gastro-intestinal (GI) tract. The ma-
jority of orally ingested sucralose is excreted as unchanged parent com-
pound, with b1% of the original oral dose excreted as two glucuronide
adduct metabolites (Sims et al., 2000). It may seem like an odd com-
pound to include as an emerging contaminant, but it is now being
found in environmental waters and it is extremely persistent (half-life
up to several years) (Richardson, 2010).

Sucralose has been detected in a wide variety of aquatic environ-
ments. A Swedish study reported concentrations of SUC in treated efflu-
ent to be ≤11 μg L−1, while surface water concentrations were ≤3.6 μg
L−1 (Brorstrom-Lunden et al., 2008). Other studies have measured su-
cralose in effluents in surface waters at concentrations ≤2.5 μg L−1

(Ferrer and Thurman, 2010; Neset et al., 2010; Loos et al., 2009;
Scheurer et al., 2009). One hundred and twenty samples were collected
from rivers in 27European countries, and sucralosewas foundup to1 μg
L−1, predominantly in samples from the United Kingdom, Belgium, The
Netherlands, France, Switzerland, Spain, Italy, Norway, and Sweden,
with onlyminor levels (b100 ng L−1) detected in samples fromGerma-
ny and Eastern Europe, suggesting a lower use of sucralose in those
countries (Richardson and Ternes, 2011).

SUC is considered safe for human consumption (the acceptable daily
intake for SUCwas set at 5mg kg−1 of bodyweight per day) (Grotz and
Munro, 2009; Brusick et al., 2010; Viberg and Fredriksson, 2011), but its
effects in the ecosystem have not yet been studied in depth, since limit-
ed ecotoxicological data are available in the scientific literature. Hjorth
et al. (2010) evaluated egg production, hatching rate, food intake and
mortality of two species of copepods, Calanus glacialis and Calanus
finmarchicus exposed to six different concentrations (0–50 mg L−1) of
SUC. The results showed that both species responded weakly to SUC,
but with C. glacialis being possibly slightly more sensitive than C.
finmarchicus. Huggett and Stoddard (2011) assessed the effects of SUC
on the survival, growth and reproduction of Daphnia magna and
Americamysis bahia (mysid shrimp). They concluded that the concentra-
tions of SUC detected in the environment are well below those required
to elicit chronic effects in freshwater or marine water bodies. On the
other hand, recently, a study on crustaceans showed for the first time
that physiology and locomotive behaviour could be affected by expo-
sure to SUC (0.0001–5 mg L−1). The behavioural response of Daphnia
magna manifested as altered swimming height and increased swim-
ming speed, whereas in gammarids the time to reach food and shelter
was prolonged. These authors suggest that exposure to sucralose may
induce neurological and oxidative mechanisms with potentially impor-
tant consequences for D. magna behaviour and physiology (Eriksson-
Wiklund et al., 2014). Research on the ecotoxicology of SUC is expected
to increase in next years, since both short and long-term effects
resulting from exposure to low levels of this compound is largely
unknown.

Biomarkers are measurable internal indicators of changes in or-
ganisms at the molecular or cellular level, which can offer great po-
tential to understand the environmentally mediated disease, and to
improve the process of risk assessment (Valavanidis and
Vlachogianni, 2010). Oxidative stress, is considered as one of the
major mechanisms of action of toxicants, and is among the most fre-
quently used biomarkers since it is able to evaluate general damage
to biomolecules such as lipids, proteins and DNA (Barata et al.,
2005). Oxidative damage to lipids, proteins and DNA and adverse
effects on enzymatic antioxidant defence mechanisms in aerobic or-
ganisms has been used in recent years as biomarkers for monitoring
environmental pollution (Valavanidis et al., 2006). The most impor-
tant oxidative stress biomarkers used in toxicological studies of
aquatic systems are lipid peroxidation (LPX), hydroperoxide content
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(HPC), protein oxidation (PCC), and enzymatic antioxidant defences
activity (Dröge, 2003).

Bioindicators can be used to evaluate the toxic impact of contami-
nants in water bodies. Toxicity studies in fish are one of the most effec-
tive methods for understanding the deleterious effects of
environmental contaminants in aquatic systems. Fish play a major role
in aquatic food webs where they generally occupy an intermediate or
higher position: not only are they fed upon by a variety of aquatic pred-
ators; they are also a major food source for humans around the world
(van der Oost et al., 2003). The common carp (Cyprinus carpio) is com-
monly used as a bioindicator species, since the cyprinids are quantita-
tively the most important group of teleost fishes cultured throughout
the world for commercial purposes and are also very resistant organ-
isms and easy to maintain (Islas-Flores et al., 2014; Huang et al., 2007).

The aimof this studywas to evaluate the toxicity induced by two dif-
ferent concentrations of SUC, (0.05 and 155 μg L−1) on various organs
(brain, gill, blood, liver and kidney) of the freshwater teleost fish C.
carpio using oxidative stress biomarkers.

2. Materials and methods

2.1. Test substances

Analytical standard of sucralose, 1,6-dichloro-1,6-dideoxy-β-D-
fructofuranosyl-4-chloro-4-deoxy-α-D-galactopyranoside, was pur-
chased from Sigma-Aldrich (St. Louis, MO). Purity of the SUC standard
was ≥98%, C12H19Cl3O8, Molecular Weight 397.63 (CAS Number
56038-13-2).

All reagents were HPLC grade. Formic acid for LC–MS analysis was
purchased from Merck (Darmstadt, Germany) and nitrogen gas was
sourced from INFRA, S.A. de C.V. (DF, Mexico). Ultrapure water was ob-
tained using an ultrapure water purification system provided by Merck
Millipore. Acetonitrile was purchased from Sigma–Aldrich.

2.2. Fish procurement and maintenance

The bioindicator species (Cyprinus carpio) were obtained from a cer-
tified aquaculture facility located in the State of Mexico, and the carps
used for this experiment fit for the following characteristics: 19.45 ±
0.53 cm in length and weight 56.82 ± 8.3 g. Prior to the toxicity evalu-
ation, organisms were maintained for 40 days in water complemented
with salts, at 20 ± 2 °C and exposed to natural light/dark photoperiods.
Oxygen concentrations was kept above 90%, pH at 7.5–8.0, total alkalin-
ity at 17.8 ± 4.3 mg L−1 and total hardness at 18.0 ± 0.5 mg L−1.

2.3. Oxidative stress determination

All the test systems were prepared using water with the same char-
acteristics and conditions described above in the specimen procure-
ment and maintenance section. The systems used were statics, no
food was provided to specimens and no changes in water were made
during the experiment.

SUC was tested in two different concentrations (0.05 and 155 μg
L−1) for the following exposure periods: 12, 24, 48, 72, and 96 h, and
a SUC free control system was set up for each exposure time. Each sys-
tem occupies 6 carps and the assays were performed in triplicate (216
fishwere used in the oxidative stress evaluation). The target concentra-
tions used in this experiment are based on the environmental water oc-
currence data of SUC and others sweeteners reported by Arbeláez et al.
(2015).

At the end of the exposure period, blood was removed by puncture
of the caudal vessel and brain, gill, liver and muscle were removed
from each specimen. Organs and tissuewere placed in phosphate buffer
solution (pH7.4) and then centrifuged at 12, 500g and−4 °C for 15min.
The following biomarkers were then evaluated: HPC, LPX, PCC and the

activity of the antioxidant enzymes superoxide dismutase (SOD) and
catalase (CAT). All bioassays were performed on the supernatant.

2.4. Determination of HPC

Hydroperoxides content in the samples was measured at 560 nm.
100 μL of supernatant was mixed to 900 μL of the reaction mixture
(0.25 mM FeSO4, 25 mM H2SO4, 0.1 mM xylenol orange and 4 mM
butyl hydroxytoluene in 90% (v/v) methanol). After the mixture, sam-
ples were incubated for 1 h at room temperature before its analysis, as
described by the Jiang et al. (1992) method. Results were expressed as
nanomolar cumene hydroperoxide per milligram of protein.

2.5. Determination of LPX

Tris-HCl buffer solution (pH 7.4)was added to 100 μL of supernatant
until a 1 mL volume was reached; then 2 mL of TBA-TCA reagent
(0.375% thiobarbituric acid in 15% trichloroacetic acid) was added to
this mixture and the solution was shaken in a vortex. Sample prepara-
tions then were heated to boiling for 45 min and immediately cooled
at −5 °C for the 3 min, followed by a centrifugation at 3000g for
10min. Lipid peroxidesweremeasured in the samples at 535 nm, as de-
scribed by the Büege and Aust (1978) method. Results were expressed
as millimolars of MDA per milligram of protein.

2.6. Determination of PCC

100 μL of supernatant was mixed with 150 μL of di-nitro phenyl hy-
drazine (10 mM, dissolved in HCl 2M), this mixture was incubated for
60min at room temperature and protected from the light. The resulting
solution was mixed with 500 μL of trichloroacetic acid (20%), and then
centrifuged 15 min later at 1100g for 5 min. The resulting bud was
washed 4 times with ethanol: ethyl acetate (1:1), followed by its disso-
lution in 2 mL of guanidine solution (6M, pH 2.3) and its incubation at
37 °C for 30 min, as described by the method of Levine et al. (1994) as
modified by Parvez and Raisuddin (2005) and Burcham (2007). Protein
carbonyl content results weremeasured at 366 nmand the results were
expressed as micromolar reactive carbonyls formed per milligram of
protein.

2.7. Determination of SOD Activity

SOD activity was measured at 480 nm bymonitoring changes in the
absorbance after 30 s and 5min of the reaction. 40 μL of supernatantwas
added to 260 μL of carbonate buffer solution pH 10.2 (50 mM sodium
carbonate and 0.1 mM EDTA), plus 200 μL adrenaline (30 mM) as de-
scribed by the Misra and Fridovich (1972) method. Results were
expressed as international units per milligram of protein.

2.8. Determination of CAT activity

CAT activity was measured at 240 nm by monitoring for 1 minute
the decrease of absorbance of hydrogen peroxide. 20 μL of supernatant
was mixed with 1 mL of isolation buffer solution (0.3 M saccharose,
1 mL EDTA, 5mMHEPES and 5mMKH2PO4), plus 0.2 mL of a hydrogen
peroxide solution (20mM,H2O2), as described byRadi et al. (1991). CAT
activity were determined in triplicate and expressed as micromolar
H2O2 per milligram of protein.

2.9. Determination of total protein

25 μL of supernatant were mixed with 75 μL of deionized water and
2.5mL Bradford's reagent. Themixwas shaken in a vortex for 1min and
then storedwithout light for 5min. Absorbancewas read at 595 nmand
the results were interpolated on a bovine albumin curve. Total protein
analysis was determined by the Bradford (1976) method.

349K. Saucedo-Vence et al. / Science of the Total Environment 575 (2017) 347–357



2.10. Quantification of SUC by liquid chromatography–tandem mass spec-
trometry (HPLC–MS/MS)

Stock solution of SUC standard was prepared by dissolution of pure
compound in methanol and ultrapure water (50%/50%) at a concentra-
tion of 1000 μg L−1 and then stored at −20 °C in amber glass bottles.

The high-performance liquid chromatography (HPLC)–MS/MS sys-
tem used was an Agilent 1290 Infinity HPLC unit coupled to an Agilent
6430 Triple Quadrupole MS equipped with electrospray ionization
(ESI). The injection volume was set to 50 μL. The separation was per-
formed in gradient elution with ultrapure water acidified with formic
acid to pH 2.5 (solvent A) and acetonitrile (solvent B) as the mobile
phase. The gradient started isocratically at 5% B for 3 min and then in-
creased to 75% in 6min, then increased to 100% in 1min, remaining con-
stant for 1 min and finally returning to 5% B in 1 min. The column used
was a RRHD Eclipse Plus C18 (2.1 × 50 mm, 1.8-μm)with a flow rate of
0.4 mL min−1 and the temperature was set at 25 °C. SUC was eluted in
less than 8 min. LS-MS/MS analyses were conducted in negative ioniza-
tion mode using multiple reaction monitoring (MRM) using 395/359
precursor/product ion transitions.

Standard without a column was injected to optimize the conditions
of ESI-MS/MS. These conditions were as follows: nebulizer pressure of
45 psi, drying gas (N2) flow rate of 11 L min−1, drying gas temperature
of 350 °C and capillary voltage of 4000 V.

2.11. Water

Water samples (10 mL) were collected from the different test sys-
tems in glass vials. Samples were acidified with 1 M HCl and SUC was
extracted from 1-mL water samples with 5 mL methanol: water (1:1).
The mix was centrifuged at 1800g for 10 min, and the upper organic
layer was used for the analysis by liquid chromatography–tandem
mass spectrometry (LC–MS/MS).

2.12. Plasma

5mLof ice-cold acetonewere added to the plasma samples and then
centrifuged at 2500g for 5min. Supernatantwas separated and analysed
for SUC by LC–MS/MS.

2.13. Tissues

0.2 g of tissue was homogenized in 4 mL of methanol: water (1:1),
followed by centrifugation at 2500g for 5 min. The top layer was

carefully separated into clean 10-mL glass vial for its further analysis
by liquid chromatography–tandem mass spectrometry (LC–MS/MS).

2.14. Statistical analysis

Results of the oxidative stress biomarkers were statistically evaluat-
ed by one-way analysis of variance (ANOVA), followed by Bonferroni
multiple comparisons test, with P set at b0.05. Statistical determina-
tions were performed with SPSS v10 software (SPSS, Chicago IL, USA).

3. Results

3.1. SUC quantification

Table 1 shows the concentration of SUC in the water systems and in
the carp. As can be seen, the SUC concentrations in thewater system are
decreasing over the time and increasing in the carp's organs and tissues
analysed. The organs that have a higher uptake of SUCwere the gills and
the blood; in the other hand the brain was the organ with the less SUC
bio-concentration.

Values are the mean of five replicates ± SE; ND = Not detected.

3.2. HPC

HPC results are shown in Fig. 1. Significant increases with respect to
the control group (P b 0.05) were observed in the concentration of
0.05 μg L−1 at 12, 24, 48 and 72 h in blood, at 48 h in liver, at 12 h in
gill, at 48 and 72 h in brain, and finally at 24, 48, 72 and 96 h in muscle.
Furthermore, significant increases with respect to the control group
(P b 0.05) were observed in the concentration of 155 μg L−1 in blood
at 24 h, in liver and gills at 48 and 72 h, and finally at 12, 48 and 72 h
in brain and muscle.

3.3. LPX

The amount of MDA induced by the SUC is shown in Fig. 2. A signif-
icant increase compared to the control group (P b 0.05) was found in
blood at 24 and 72 h in the 0.05 μg L−1 concentration and at 12, 24
and 72 h in the 155 μg L−1concentration. Moreover, a time-dependent
increases compared to the control group (P b 0.05)were found at all ex-
posure times in the two concentrations for gill, brain andmuscle; except
in muscle at 96 h in 155 μg L−1. The most evident increases were ob-
served in brain in 155 μg L−1. In the other hand a time-dependent

Table 1
SUC concentrations in the exposure times.

Exposure
concentration

Exposure time
(h)

SUC in water system
(μg L−1)

SUC in blood carp (μg
L−1)

SUC in gill carp
(μg g−1)

SUC in liver carp (μg
g−1)

SUC in brain carp (μg
g−1)

SUC in muscle carp (μg
g−1)

Control group 12 ND ND ND ND ND ND
24 ND ND ND ND ND ND
48 ND ND ND ND ND ND
72 ND ND ND ND ND ND
96 ND ND ND ND ND ND

0.05 μg L−1 12 0.04 ± 0.008 0.0010 ± 0.0001 0.0001
± 0.00001

0.00009
± 0.000001

ND ND

24 0.04 ± 0.007 0.0010 ± 0.0001 0.0001
± 0.00001

0.00008
± 0.000001

ND ND

48 0.03 ± 0.002 0.0023 ± 0.0002 0.00028
± 0.00002

0.00009
± 0.000001

ND ND

72 0.03 ± 0.001 0.0042 ± 0.0003 0.00019
± 0.00001

0.00011
± 0.000001

0.00002
± 0.0000001

0.00003 ± 0.0000001

96 0.02 ± 0.001 0.0041 ± 0.0001 0.00031
± 0.00001

0.00010
± 0.000002

0.00004
± 0.0000001

0.00006 ± 0.0000001

155 μg L−1 12 132.2 ± 3.1 6.2 ± 0.8 2.1 ± 0.6 0.9 ± 0.02 0.06 ± 0.001 0.09 ± 0.002
24 127.5 ± 1.8 5.8 ± 1.1 1.9 ± 0.4 0.9 ± 0.04 0.07 ± 0.001 0.08 ± 0.003
48 118.6 ± 2.1 7.6 ± 1.2 2.9 ± 0.6 0.8 ± 0.07 0.09 ± 0.002 0.09 ± 0.001
72 112.7 ± 1.5 8.3 ± 2.3 3.1 ± 0.4 1.1 ± 0.08 0.09 ± 0.001 0.1 ± 0.002
96 98.3 ± 2.9 8.1 ± 1.5 2.8 ± 0.5 1.4 ± 0.04 0.09 ± 0.002 0.16 ± 0.001
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Fig. 1.HPC inblood, liver, gill, brain andmuscle ofC. carpio exposed for 12, 24, 48, 72 and96h respectively to SUC concentrations of 0.05 μg L−1 and 155 μg L−1. Values are themean of three
replicates ± SEM. CHP = cumene hydroperoxide. Significantly different (P b 0.05) from: *control values, A = 0.05 μg L−1, B = 155 μg L−1 ANOVA and Bonferroni's test.

Fig. 2. LPX in blood, liver, gill, brain and muscle of C. carpio exposed for 12, 24, 48, 72 and 96 h to SUC concentrations of 0.05 μg L−1 and 155 μg L−1. Values are the mean of three
replicates ± SEM. MDA = malondialdehyde. Significantly different (P b 0.05) from: *control values, A = 0.05 μg L−1, B = 155 μg L−1 ANOVA and Bonferroni's test.
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Fig. 3. PCC in blood, liver, gill, brain and muscle of C. carpio exposed for 12, 24, 48, 72 and 96 h to SUC concentrations of 0.05 μg L−1 and 155 μg L−1. Values are the mean of three
replicates ± SEM. Significantly different (P b 0.05) from: *control values, A = 0.05 μg L−1, B = 155 μg L−1 ANOVA and Bonferroni's test.

Table 2
Increases and decreases in oxidative stress biomarkers comparing 0.05 and 155 μg L−1 against the control group.

Organs Exposure time (h) Oxidative stress biomarkers

HPC LPX PCC SOD CAT

0.05 μg
L−1

155 μg
L−1

0.05 μg L−1 155 μg L−1 0.05 μg L−1 155 μg
L−1

0.05 μg
L−1

155 μg L−1 0.05 μg L−1 155 μg L−1

Blood 12 127.9* ↑ 17.4* ↓ 0.8 ↓ 155.6* ↑ 54.3* ↓ 135.3* ↑ 120.4* ↑ 212.7* ↑ 124.2* ↑ 225.3* ↑
24 131.5* ↑ 130.9* ↑ 107.7 ↑ 161.6* ↑ 66.9* ↓ 19.8* ↓ 52.9* ↓ 552.9* ↑ 32.6* ↓ 268.6* ↑
48 122.1* ↑ 570* ↓ 19.2* ↓ 13.6* ↓ 82.1* ↓ 33.7* ↓ 280.9 ↑ 61.3* ↓ 183.2* ↑ 89.3* ↓
72 128.2* ↑ 3.1* ↓ 108.3 ↑ 124.1* ↑ 4.9 ↓ 18.1 ↓ 179.2 ↑ 156.8* ↑ 165.5* ↑ 92.6* ↓
96 8.9 ↓ 55.5* ↓ 11.2 ↓ 18.0* ↓ 85.3* ↓ 18.7* ↓ 6.6 ↓ 223.6* ↑ 144.9* ↑ 86.9* ↓

Liver 12 59.9* ↓ 53.3* ↓ 42.6* ↓ 10.0* ↓ 49.5* ↓ 5.5 ↓ 22.4* ↓ 37.2* ↓ 48.1* ↓ 67.5* ↓
24 75.8* ↓ 43.7* ↓ 39.2* ↓ 8.8* ↓ 79.6* ↓ 23.3* ↓ 67.8* ↓ 85.2* ↓ 69.2* ↓ 84.7* ↓
48 159.7 ↑ 132.3* ↑ 53.5* ↓ 50.3* ↓ 242.9* ↑ 248.0* ↑ 980.1* ↑ 42.2* ↓ 244.7* ↑ 167.9* ↑
72 62.0* ↓ 135.0* ↑ 35.3* ↓ 25.9* ↓ 131.7* ↑ 511.1* ↑ 57.1* ↓ 1445.1* ↑ 66.2* ↓ 72.9* ↓
96 62.0* ↓ 79.0* ↓ 48.2* ↓ 52.2* ↓ 32.5* ↓ 59.5* ↓ 73.5* ↓ 96.7 ↓ 51.2* ↓ 91.4* ↓

Gill 12 118.6 ↑ 2.1* ↓ 829.2* ↑ 883.9* ↑ 186.4* ↑ 336.4* ↑ 627.2* ↑ 126.1* ↑ 67.0* ↓ 105.3* ↑
24 60.7* ↓ 40.3* ↓ 316.5* ↑ 548.6* ↑ 40.3* ↓ 270.8* ↑ 84.7* ↓ 110.9* ↑ 23.0* ↓ 54.5* ↓
48 2.0 ↓ 189.5* ↑ 781.4* ↑ 1252.9* ↑ 193.0* ↑ 330.6* ↑ 93.2* ↓ 377.5* ↑ 206.8* ↑ 821.7* ↑
72 37.1* ↓ 101.7 ↑ 522.7* ↑ 1113.3* ↑ 105.6 ↑ 288.9* ↑ 37.6* ↓ 178.1* ↑ 57.5* ↓ 9.6* ↓
96 72.6* ↓ 39.6* ↓ 262.6* ↑ 693.5* ↑ 50.1* ↓ 367.6* ↑ 213.2* ↑ 25.0* ↓ 24,8* ↓ 361.1* ↑

Brain 12 11.8 ↓ 100.2 ↑ 260.6* ↑ 782.2* ↑ 79.9* ↓ 41.0* ↓ 120.5* ↑ 194.5* ↑ 606.0* ↑ 294.4* ↑
24 73.5* ↓ 28.1* ↓ 333.5* ↑ 754.5* ↑ 79.3* ↓ 73.4* ↓ 70.8* ↓ 3.2* ↓ 220.5 ↑ 52.2 ↓
48 500.4* ↑ 353.3* ↑ 3943.4* ↑ 2973.5* ↑ 175.8* ↑ 30.6* ↓ 224.8* ↑ 384.3* ↑ 742.6* ↑ 1080.6* ↑
72 210.0* ↑ 432.5* ↑ 623.4* ↑ 1079.5* ↑ 63.3* ↓ 149.7* ↑ 1.6 ↓ 740.2* ↑ 2841.7* ↑ 2067.2* ↑
96 54.9* ↓ 49.6* ↓ 7451.0* ↑ 4301.7* ↑ 88.3* ↓ 71.4* ↓ 59.2* ↓ 49.9* ↓ 254.6* ↑ 471.6* ↑

Muscle 12 12.2* ↓ 232.2* ↑ 123.8* ↑ 233.5* ↑ 241.3* ↑ 296.0* ↑ 104.0 ↑ 692.4* ↑ 124.8 ↑ 650.8* ↑
24 118.0* ↑ 56.5* ↓ 151.2* ↑ 107.7* ↑ 294.6* ↑ 111.3* ↑ 256.5* ↑ 40.6* ↓ 298.9* ↑ 106.4* ↑
48 404.0* ↑ 185.8* ↑ 517.1* ↑ 447.9* ↑ 1149.2* ↑ 559.5* ↑ 476.3* ↑ 432.3* ↑ 513.6* ↑ 890.2* ↑
72 315.8* ↑ 142.8* ↑ 176.0* ↑ 372.2* ↑ 160.9* ↑ 220.7* ↑ 288.4* ↑ 209.6* ↑ 173.4* ↑ 367.1* ↑
96 128.2* ↑ 77.6* ↓ 106.0* ↑ 41.7* ↓ 110.9* ↑ 68.7* ↓ 21.2* ↓ 13.0* ↓ 209.2* ↑ 1942.5* ↑
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decreases compared to the control group (Pb 0.05)were found at all ex-
posure times in the two concentrations for the liver.

3.4. PCC

PCC results are shown in Fig. 3. A significant increase with respect to
the control group (Pb 0.05)was found for the blood at 12h in the155 μg
L−1 concentration, for the liver at 48 and72 h for both concentrations, in
the gill at 12, 48 and 72h for the 0.05 μg L−1 concentration and at 12, 24,
48, 72 and 96 h for the 155 μg L−1 concentration, in brain at 48 h in the
0.05 μg L−1 concentration and at 72 h for the 155 μg L−1 concentration
and finally in muscle in all the exposure times for the 0.05 μg L−1 con-
centration and at 12, 24, 48 and 72 h for the 155 μg L−1 concentration
(Table 2).

3.5. SOD

SOD results are shown in Fig. 4. Significant increases with respect to
the control group (P b 0.05) were observed in the concentration of
0.05 μg L−1 at 12, 48 and 72 h in the blood, at 48 h for the liver, at 12
and 96 h for the gills, at 12 and 48 h in brain, and finally at 12, 24, 48
and 72 h for themuscle. Furthermore, significant increases with respect
to the control group (P b 0.05) were observed in the concentration of
155 μg L−1 at 12, 24, 72 and 96 h in the blood, at 72 h for the liver, at
12, 24, 48 and 72 h for the gill, and finally at 12, 48 and 72 h for the
brain and muscle respectively.

3.6. CAT

CAT activity results are shown in Fig. 5. Significant increases with re-
spect to the control group (P b 0.05) were observed for the 0.05 μg L−1

concentration, at 12, 48, 72 and 96 h in blood, at 48 h in the liver and
gills, and at all exposure times for the brain and muscle. Furthermore,
significant increases with respect to the control group (P b 0.05) were

observed in the concentration of 155 μg L−1at 12 and 24 h for the
blood, at 48 h in the liver, at 12, 48 and 96 h in the gills, at 12, 48, 72
and 96 h in the brain, an finally at all the exposures times in the muscle.

4. Discussion

Thewide andhigh consumption of SUC around the globe, have result
in different scientific reports that described its occurrence in different
water bodies at concentrations ranging from 0.1 to 1.0 g L−1

(Eriksson-Wiklund et al., 2014; Lange et al., 2012; Minten and
Adolfsson-Erici, 2011; Loos et al., 2009), moreover this artificial sweet-
ener poses a high stability under different conditions, which may have
consequences over different aquatic species. However, the present
state of knowledge is still unable to comprehend fully the possible eco-
toxicological risk that this compound may pose.

SUC poses three chloro groups on its structure, whichmakes it resis-
tant against different conditions. Particularly this molecule has been re-
ported to be persistent against different digestive enzymes responsible
of the hydrolysis in the gut (European Commission, 2000). Likewise,
SUC has been considered as an stable compound under several environ-
mental conditions; Grice and Goldsmith (2000) reported that SUC was
expected to be intact within one year at a pH 4 and 6; likewise Grotz
et al. (2012) reported that over a storage time of five years there was
no chemical changes in a buffered solution of SUC at pH 4.4; moreover
The European Commission (2000) described that after six months of
storage only a 0.3% of hydrolysis was reported in a solution of SUC at
pH 3.

Its high stability and resistance to hydrolysis may result on its bio-
concentration in different organs and tissues. The analytic results ob-
tained in this study shows that for the 155 μg L−1 concentration, SUC
was detected and quantified in all the exposure times and in all the or-
gans and tissues tested,with the highest concentrations detectedwithin
48–72 h, and quantified in the organs in the following decreasing
order, blood, gill, liver, muscle, and brain. By the same way for the

Fig. 4. SOD activity in blood, liver, gill, brain andmuscle of C. carpio exposed for 12, 24, 48, 72 and 96 h to SUC concentrations of 0.05 μg L−1 and 155 μg L−1. Values are themean of three
replicates ± SEM. Significantly different (P b 0.05) from: *control values, A = 0.05 μg L−1, B = 155 μg L−1 ANOVA and Bonferroni's test.
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0.05 μg L−1concentration, SUCwas detected in all the exposure times in
the blood, gill and liver, and only between 72 and 96 h in the brain and
muscle; the highest concentrations detected were within 72–96 h, and
was quantified in the organs in the following decreasing order, blood,
gill, liver, muscle and brain. However, with low-octanol water
partitioning coefficient (−0.492) and a structure full of hydroxyl
groups, SUC poses a low bioaccumulation potential (Tollefsen et al.,
2012). The reviewed literature stated that SUC does not accumulate sig-
nificantly in different aquatic organisms tissues, with a bioaccumulation
factors (BCF) lower than the criteria set to identify it as persistent in spe-
cies as Danio rerio, Pseudokirchneriella subcapitata and Daphnia magna
(Lillicrap et al., 2009a, b; Lillicrap et al., 2011). Our results are in agree-
ment with the above, due to in the bigger concentration (155 μg L−1)
only 12.55 μg (8.1%) were accumulated in the different organs and tis-
sues analysed, which means a BCF of 0.1276; likewise in the lower con-
centration (0.05 μg L−1) only 0.00461 μg (9.22%) were accumulated in
the different organs and tissues analysed, which means a BCF of
0.0922. For both concentrations, the BCF results obtained in this study
for the uptake of SUC were below than the unit, which means that
SUC does not accumulate significantly in the different organs and tis-
sues of Cyprinus carpio.

Regarding with the toxicology of SUC, in the recent decades it has
been tested in different aquatic organisms (Lemna gibba, Calanus
glacialis, Calanus finmarchicus, Pseudokirchneirella subcapita, Daphnia
magna,Danio rerio) resulting always in negligible adverse acute/chronic
toxic effects as well as in low bio-concentration factor (Soh et al., 2011;
Lillicrap et al., 2011; Hjorth et al., 2010); however Eriksson et al. (2012)
reported that SUCmodifies the swimming behaviour in Daphnia magna
as well as modifies the time to reach food and the shelter time in
Gammarus oceanicus and Gammarus zaddachi, moreover Eriksson-
Wiklund et al. (2014) report that SUC induce neurological and oxidative
damage with potentially important consequences for animal behaviour
and physiology. However the present knowledge and scientific data
until now is insufficient to demonstrate its environmental innocuity.

To our knowledge this is the first study examining the oxidative
stress produced by SUC in aquatic species. Our analytic results demon-
strate that SUCwas present in thewatermedia andwithin the carp dur-
ing the whole experiment, thereby the changes in the enzymatic
activity (SOD, CAT) and the damages to the biomolecules (LPx, HPC,
PCC) described in the result section are directly related to the presence
of this artificial sweetener. Our results indicate a significant elevation in
the activity of SOD and CAT enzymes in all the organs and tissues
analysed, for the SOD activity the organ with the highest activity was
the muscle followed by the liver, gill and brain in a decreasing order;
the blood was the only tissue with negligible SOD activity; in the
other hand, for the CAT activity the organ with the highest activity
was the gill, followed by the liver, blood, muscle and brain in a
decreasing order. An increase in the activity of CAT and SOD enzymes
has been reported in the face of different environmental pollutants
(Elizalde-Velázquez et al., 2016; SanJuan-Reyes et al., 2015;
Islas-Flores et al., 2014, García-Medina et al., 2013; Islas-Flores et al.,
2013a, 2014; SanJuan-Reyes et al., 2013; Garcia-Medina et al., 2010),
since SOD and CAT enzymes represents the major reactive oxygen spe-
cies (ROS) scavengingmechanisms and thereby the first line of defence
against oxidative stress.

The scientific literature report that less than 10% of the initial dosage
of SUC ismetabolized in twodifferentmetabolites as glucuronide conju-
gates of SUC; 4-chloro-4-deoxy-galactose (4-CG) and 1,6-dichloro-1,6-
dideoxy-fructose (1,6-DCF) (Sims et al., 2000; Roberts et al., 2000;
Grice and Goldsmith, 2000). Moreover, Abou-Donia et al. (2008) de-
scribed that SUC elevated the expression of P-gp and CYP (CYP3A,
CYP2D) enzymes in the gastrointestinal tract of rats at doses approved
by the FDA and EU. The CYP subfamily CYP3A is reported to have spec-
ificity over organochlorine drugs therefore the organochlorine sweeten-
er SUC could be a substrate for this CYP enzyme (Schiffman and Rother,
2013; Higashikawa et al., 1999). In this context, it is noteworthy that the
CYP superfamily are related also with the intestinal metabolism of dif-
ferent compounds, contributing significantly to the first pass effect

Fig. 5. CAT activity in blood, liver, gill, brain and muscle of C. carpio exposed for 12, 24, 48, 72 and 96 h to SUC concentrations of 0.05 μg L−1 and 155 μg L−1. Values are the mean of three
replicates ± SEM. Significantly different (p b 0.05) from: *control values, A = 0.05 μg L−1, B = 155 μg L−1 ANOVA and Bonferroni's test.
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and therefore with the decrease in the concentration of the xenobiotics
(Schiffman and Rother, 2013; Paine, 2009; Paine et al., 2006; Paine and
Thummel, 2003; Hall et al., 1999). Fishes are capable of xenobiotic me-
tabolism by microsomal oxidation, reduction and conjugation; indeed
the enzyme characteristics are similar between fishes and mammals
(Chambers and Yarbrough, 1976), particularly the CYP subfamily
CYP3A has been reported to be present in liver, intestines, blood and
brain of rainbow trout (Oncorhynchus mykiss), killifish (Fundulus
heteroclitus), medaka (Oryzias latipes), and common carp (Cyprinus
carpio) (González-Mantilla, 2006; Thibaut et al., 2006; Kashiwada et
al., 2005; Hegelund and Celander, 2003; Lee and Buhler, 2003; Buhler
and Wang-Buhler, 1998; Celander and Stegeman, 1997). Likewise the
glucuronidation process in teleost fishes as carps have been reported
to play an important role in the hepatic detoxification of different xeno-
biotics (Yokota et al., 2002; George, 1994; Clarke et al., 1991; Forlin and
Haux, 1985), therefore it is possible that SUC could be metabolized by
oxidation and glucuronidation processes in the carp.

Cytochromes P450 are responsible for the biotransformation ofmost
xenobiotics as well as participate actively in the elimination of foreign
chemicals from the body, however these enzymes has an important
consequence related to its activity since these enzymes reduce molecu-
lar oxygen to produce prooxidant species,which, if are not countered ef-
ficiently by antioxidants, create oxidative stress. Since the cells have a
high content of themicrosomalmonooxygenase system, and themicro-
somal electron transfer chain is one of themain sources of ROS, its activ-
ity has been associated to cytotoxicity, genotoxicity, oxidative stress,
carcinogenesis, drug toxicity, and the pathogenesis of several diseases
(González, 2005; Davydov, 2001; Robertson et al., 2001; Bondy and
Naderi, 1994). In a recent study Eriksson et al. (2014) reported that
the exposure of Daphnia magna to SUC induces oxidative mechanisms
with potentially important consequences for animal behaviour and
physiology. They measured the oxygen radical absorbing capacity
(ORAC), which represent the level of antioxidant defences, and they
found an increase in the values of this biomarker. Therefore the bio-
transformation process mediated by the microsomal monooxygenase
system and the CYP enzymes with the consequent release of ROS,
could explain the increase in the SOD and CAT activities described
above in this study.

Another possible explanation could be relatedwith the energy regu-
lation; Swithers et al. (2008, 2009, 2010) reported that consumption of
high potency sweeteners interfered with the ability of sweet taste to
predict caloric consequences and therefore disrupted energy regulation
(Schiffman and Rother, 2013; Swithers et al., 2010, 2009; Swithers and
Davidson, 2008). The sweet taste cues have been reliable predictors of
energy density of food, however artificial sweeteners like SUChave neg-
ligible utilizable calories, which uncouple the relation between sensory
properties of foods and their caloric content (Schiffman and Rother,
2013). Sugar receptors have been found in Cyprinus carpio (Hidaka
and Yokota, 1967), thereby the carp could likely sense the artificial
sweetener SUC dissolved in the water serving as a cue for food intake.
Eriksson et al. (2014) stated that exposure of Daphnia magna to SUC
stimulates feeding and increase caloric intake that may also predispose
test animals to oxidative stress. In this context, Pepino et al. (2013) re-
ported that SUC increase glucose and insulin levels in obese women,
as well as different authors also have reported that SUC modulates glu-
cose and insulin secretion in rodents (Nakawaga et al., 2009;Mace et al.,
2007). Brief episodes of hyperglycemia cause tissue damage by mecha-
nisms involving repeated acute changes in cellular metabolism; Rolo
and Palmeira (2006) number some key metabolic pathways as major
contributors to hyperglycemia induce tissue damage: by increasing
the polyol pathway flux and by increasing the advanced glycation end
product (AGE). The increase in the polyol pathway flux decreases the
NADPH and glutathione equivalents, which enhance sensitivity to intra-
cellular ROS (Brownlee, 2001). The production of advanced glycation
end product (AGE) precursor interferes with the cell integrity by induc-
ing receptor-mediated productionof ROS (Yan et al., 1994). Additionally

Nishikawa et al. (2000b) reported that hyperglycemia induced theover-
production of superoxide in themitochondria. Therefore the disruption
in the energy regulation due to an increase of glucose and insulin levels
induced by SUC involves the production and release of intracellular ROS,
which also could explain the increase in the SOD and CAT activities de-
scribed above in this study.

An increased ROSproduction not only involves an increase in the an-
tioxidant enzymes levels itmay also cause cell damage by attacking bio-
molecules as lipids and proteins, resulting in an increase in LPX and in
the oxidized protein content (Gómez-Oliván et al., 2014; Shacter,
2000). In our study we use the HPC and LPX as molecular biomarkers
to assess the damage of lipids and both of them were modified due to
the presence of these artificial sweetener; the organs that showed
more damage were gills, brain and muscle; in the other hand blood
and liver showed a negligible effect for this two biomarkers related
with the presence of SUC. Likewise, we use the PCCmolecular biomark-
er to measure the damage to proteins, as well as in the HPC and LPX re-
sults, the organs that showed more damage were gills, muscle, brain,
but also liver showed an increase in the protein carbonylation content,
however, the blood again showed a negligible effect for this molecular
biomarker. Our results are in agreement with the reports of Eriksson-
Wiklund et al. (2014) who stated that SUC induce lipid peroxidation
in Daphnia magna after it exposure to SUC. Gills are the main organs
in intimate contactwith thewatermedia and consequentlywith the xe-
nobiotics, thereby are likely to be target for aquatic pollutants, addition-
ally gills are known to be a site with a high oxidative metabolism and a
site of expression of the cytochrome isoform CYP3A, promoting the pro-
duction of ROS and consequently the oxidative damage (Gómez-Oliván
et al., 2014; Uno et al., 2012; Monteiro et al., 2005). The brain as well as
the nervous systems are inadequately equipped with antioxidant de-
fence systems to prevent oxidative damage therefore are prone to oxi-
dative stress, in this context Eriksson-Wiklund et al. (2014), reported
that exposure to SUC may induce neurological and oxidative mecha-
nisms, since they observed a stimulating effect of SUC on the acetylcho-
linesterase (AChE) activity of Daphnia magna; scientific literature
reported that elevated activity of AChE has been linked to neurodegen-
erative diseases as Alzheimer´s disease, Parkinson disease's, multiple
sclerosis and restless leg syndrome (RLS) (Eriksson-Wiklund et al.,
2014; Akaike et al., 2010; Toiber and Soreq, 2005). Skeletal muscles
poses high oxidative metabolism since this organ uses high quantities
of oxygen and large amounts of energy to do their functions (Ferrari
et al., 1997). Wiklund et al. (2012) reported that SUC altered the swim-
ming behaviour of Daphnia magna, which results in increased energy
spending and induce high metabolic costs, thereby inducing the pro-
duction of ROS. Muscles are made of proteins and aminoacids, which
are target of ROS; direct damage to proteins or chemical modifications
of aminoacids and proteins during oxidative stress, can give rise to pro-
tein carbonyls (Parvez and Raisuddin, 2005).

More experimental studies are needed in different aquatic species
that involve the use of different molecular biomarkers, as well as differ-
ent studies as cytotoxicity and genotoxocity to fully understand the eco-
toxicological risk associated with the presence of this artificial
sweetener in the environmental water bodies, since the present study
shows that SUC modifies the normal antioxidant enzymatic activity
and induce oxidative damage in lipids and proteins of Cyprinus carpio.

5. Conclusion

SUC possesses a low BCF (less than the unit for both test concentra-
tions) which means that this organochlorine compound does not
accumulate in the organs and tissues of Cyprinus carpio. In both concen-
trations the higher values of SUC were recorded between 48 and 96 h
after it exposition, being the blood the tissues with the higher SUC con-
centrations and the brain with the less values for this sweetener. SUC
modified the normal antioxidant enzyme level and induce oxidative
damage in lipids and proteins of Cyprinus carpio, the organs which
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showed more damage were gills, muscle, brain and liver in decreasing
order, and the blood was the only tissue with negligible affects. The set
of assays used in the present study could be effectively used as potential
biomarkers to measure the toxicity of AMX for the freshwater fish in
the field of environmental biomonitoring, as well as also constitutes a re-
liable earlywarning biomarker for the use in the evaluation of the toxicity
induced by these emerging contaminants on aquatic species.
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